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When firms exploit behavioral biases it is natural to think that, eventually,

consumers will learn to avoid their mistakes, limiting their exploitation. Profit

maximizing firms, however, have an incentive to undermine such learning. We

study the consumer learning dynamics and the firm’s response in a multi-unit

descending price auction with a simultaneous fixed price offer. In our panel

of 8 million bids by 280.000 bidders, consumers often bid more than the fixed

price. Depending on competing bids, an overbid can lead to paying more than

the fixed price (overpaying). We argue overpaying increases the saliency of

the consumers’ mistake by making it payoff relevant, which is likely to affect

consumer learning. Indeed, bidders who overpay subsequently overbid less often

and are more likely to leave the market compared to bidders who similarly

overbid but did not overpay. We show the resulting loss in future profits makes

overpaying undesirable, and document a structural break in our data at which

the firm eliminates such overpayments — and the resulting consumer learning

— through changes in how it runs its auctions. Methodologically, we discuss

identification of our treatment effects using causal graphs and show how these

treatment effects identify a three-type structural model of bidder behavior with

learning dynamics.
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1. Introduction

Theory and evidence suggests that firms price strategically to exploit consumer biases

(see, for example Della Vigna and Malmendier, 2006; Grubb, 2015; Grubb and Osborne,

2015; Heidhues and Kőszegi, 2018; Malmendier and Szeidl, 2020). Despite such evidence,

a common critique is that consumers will learn to avoid being exploited. This argument,

however, ignores the firm’s incentives to inhibit consumer learning. In this paper, we

empirically study consumer learning in retail auctions and document how a firm improves

at designing the sales environment to impede consumer learning.

Despite its potential importance, we know little about whether and how firms are able to

manage consumer learning. A measurement challenge arises when a firm takes actions to

prevent consumer learning. While we can in principle observe the firm’s actions, there is

often little variation in those actions. Additionally, we cannot easily infer the prevented

consumer learning from firm’s actions alone. When a firm improves at managing consumer

learning over time, we can overcome the measurement challenge. In such a case, researchers

can collect data on consumer learning and on the firm’s response.

In our case, the firm operates a televised multi-unit descending auction with uniform

pricing and an online shop, where goods are sold at a fixed price. The auction starts at a

high price that is lowered in increments over time. Bidders bid at the current price and

the auction ends when all units are claimed. According to the uniform pricing rule, every

winning bidder pays the lowest successful bid. Following the empirical literature, we call

a bid that is higher than the fixed price an overbid.1 When the auction price is higher

than the fixed price, we call the auction overpaid. Crucially, overbidding does not imply

overpaying, as overpaying requires that all bids in an auction are overbids (the lowest bid

is higher than the fixed price).

We collect a bidder-level panel of the firm’s multi-unit descending auction. The data

0Schäfer: University of Bonn, Paul.Schaefer@uni-bonn.de, Schulten: DICE, University of Düsseldorf,
Simon.Schulten@hhu.de, We would like to thank Paul Heidhues, Lorenz Götte, Florian Zimmermann,
Axel Ockenfels, Joel Stiebale, Florian Heiß, Frauke Kreuter, Paul Hünermund, Hans-Peter Grüner,
Matthew Backus, Regina Keller, seminar audiences at Bonn, Düsseldorf, Mannheim and Louvain-la-
Neuve and the IT support of Mannheim School of Social Sciences for kindly providing a server. This
research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation=
under Germany’s Excellence Strategy - EXC 2126/1– 390838866, Collaborative Reserch Center (SFB)
884 "Political Economy of Reforms" and Graduiertenkolleg GRK 1974 / 235577387.

1For a descriptive analysis of overbidding in auctions run by the same firm see Ocker (2018).
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spans over two years, detailing more than 8 million bids submitted by 280.000 bidders in

approx. 70.000 auctions. The bidder level panel structure allows us to analyze consumer

learning and the firm’s reactions to it. In line with lab and field evidence many customers,

at the beginning of our sample, overbid (e.g. Kagel and Levin, 2011; Malmendier and Lee,

2011; Gesche, 2022; Ocker, 2018).

In our auction format, overbidding is a necessary, but not a sufficient condition for

overpaying. An auction ends in overpayment if and only if all bids are overbids. We exploit

this fact to construct a natural treatment and control group design: treated are those

bidders who overbid and — due to other consumers’ bids - ended up overpaying, whereas

bidders who similarly overbid but did not overpay end up in the control group.

Overpaying makes the consumers’ mistake (overbidding) payoff relevant and arguably

more salient. A salience effect of overpaying on future behavior compared to consumers who

overbid but did not overpay is then naturally interpreted as evidence of consumer learning.

We argue that theories explaining overbidding as optimal behavior are inconsistent with

the observed behavioral changes following overpayment in our data. We find overpaying

leads consumers to spend less in the future. More explicitly, it leads consumers to hand in

fewer overbids and fewer bids overall, as well as increases the likelihood of refraining from

bidding altogether.

We use a DAG as a convenient and precise way to codify causal knowledge about the

data generating process. We derive our DAG from institutional knowledge about the

way the firm plans and runs the auction, the auction rules (uniform pricing), and natural

assumptions about bidder behavior. In addition, we discuss how such a DAG can be derived

from, perhaps more familiar, structural equation models.2

Our analysis demonstrates a novel way to combine a traditional economic model, a

directed acyclic graph (DAG) (Pearl, 2009; Imbens, 2020; Hünermund and Bareinboim,

2019), and the sufficient statistics approach (Chetty, 2009). We develop a three-type model

of initial overbidders who may learn to become non-overbidders or dropouts. An overbidder

who becomes a non-overbidder simply truncates her bidding function at the fixed price,

so that she does not repeat her mistake. An overbidder who becomes a dropout ceases to

participate in future auctions altogether. Learning not to overbid is a behavioral adjustment

2Assigning casual meaning to a structural equation model turns it into a structural causal model.
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at the intensive margin, whereas dropouts represent the extensive margin. In our three-type

model, conditional on bidding, learning not to overbid drives the observed behavioral change

of bidders handing in fewer overbids. Dropouts, however, drive the negative effect on both

overbids and non-overbids (fewer bids overall). We disentangle the two margins and find

that an initial overbidder, who overpays, has a 4.2% chance of dropping out and a 7.2%

chance of becoming a non-overbidder.

In the presence of consumer learning the firm faces a trade-off between extra overpay-

ing revenues today and foregone revenue tomorrow. Back-of-the-envelope calculations

demonstrate that the extraction of overpaying revenue is suboptimal in the beginning

of our sample. In the second half of our sample we observe a structural break in the

time series of overbidding and overpaying. Before the break, roughly 17% of all bids are

overbids and 4% of auctions end in overpayment. After the break, overbidding prevalence

is substantially reduced and practically no auction ends in overpayment. The structural

break is accompanied by a small jump and a reversal in the trend of items sold per week,

albeit statistically insignificant. Fixed prices remain unchanged at the break-point.

Management explains that they induced the structural break in overpaying with a

relatively minor, but targeted quantity increase. Auctions are simultaneously run by an

on-screen auctioneer and a director, who is off-screen and has access to real-time demand

(e.g., number of people watching, revenue by the minute). The director uses this information

to "steer" the auctions and may, if necessary, increase the quantity during the auction.3

Thus, the director is able to target quantity increases to auctions that are at risk of ending

in overpayment, thus shutting down overpayment. Management also tells us of a new

pricing policy implemented just after the end of our sample. This new pricing policy raises

fixed prices and auctions routinely undercut these higher fixed prices with the starting bid,

ruling out overbidding mechanically. Raising fixed prices (presumably) comes at the cost of

lower online shop sales, so after an auction ends, fixed prices are lowered in a 24-hour sales

discount to a small increment above the auction price. This gives customers who missed

the auction the chance to purchase at a comparable price, rather than the very high regular

3In its terms and conditions the firm reserves the right to increase quantity after the auction has started.
Quantity decreases are not mentioned in the terms and conditions, but there is an option to fully cancel
an auction when demand is so low that the price would have to approach 0 for the auction to end.
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fixed price.4

By documenting that our firm does not take into account consumer learning in the

beginning of our sample, we contribute to the literature on non-optimizing firms (see, for

example Cho and Rust, 2010; DellaVigna and Gentzkow, 2019; Hortaçsu and Puller, 2008;

Hortaçsu, Luco, Puller and Zhu, 2019). In contrast to these papers, our firm is adaptive as it

gradually improves at managing consumer learning, by increasing its scope of maximization

(Doraszelski, Lewis and Pakes, 2018). First, the firm optimizes its quantity choice in a

targeted way, but leaves fixed prices unchanged. Later, it optimizes over quantities and

fixed prices jointly. Interestingly, the last change was only implemented by a new CEO, in

line with the idea of learning through noticing (Hanna, Mullainathan and Schwartzstein,

2014).

Our paper is related to the empirical literature that studies how consumers learn when they

trigger a fee. This literature documents that (some) consumers learn to avoid triggering fees,

but this learning effect depreciates over time (Haselhuhn, Pope, Schweitzer and Fishman,

2012; Agarwal, Driscoll, Gabaix and Laibson, 2013). Ater and Landsman (2013) find

consumers who switch their banking plans after paying an overage fee are more likely to

switch to plans with larger allowances. In contrast to consumers who switch plans but did

not pay overage fees, fee-switchers increase rather than decrease their monthly payments,

suggesting that consumer learning can be detrimental to consumers.

Our finding that consumers give up on bidding rather than simply adjust their bid

function to avoid overbidding also indicates a complex, and possibly non-rational, response

to feedback. A transaction that leaves the bidders worse off than the reference point (i.e.,

overpaying) results in a negative transaction utility (Thaler, 1999) and may reduce future

market participation through several channels: updated beliefs about the utility from

market participation (Backus, Blake, Masterov and Tadelis, 2022), updated beliefs about

their abilities (Seru, Shumway and Stoffman, 2010) and antagonizing consumes (Anderson

and Simester, 2010). Gesche (2022) documents customer complaints in the eBay feedback

system when they pay more at auction than the fixed price offered by the same seller. In

our case, management confirms anecdotally that some consumers who overpay call the

4Another interpretation of setting a rebate to the auction price is that the auction serves as a mechanism
to discover a "reasonable" fixed price.
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hotline to complain.

To the best of our knowledge, we are first to illustrate how firms actively suppress or

at least slow down consumer learning. If consumers bid less than their value of the good,

trade is efficient and consumer attrition decreases consumer welfare. Under this assumption,

the firm’s quantity targeting policy increases consumer welfare by minimizing attrition

compared to the initial exploitation of overpaying. On the other hand, if consumers bid

more than their value, they may pay an auction price above their value, particularly in

overpaid auctions (for a survey of above value bidding see Kagel and Levin, 2011, Section

1.2). Consumer attrition may then increase consumer welfare. In this case, shutting down

consumer learning through targeted quantity increases may harm consumer welfare. In any

case, targeted quantity increases are preferred in terms of consumer welfare over the pricing

policy of increased fixed prices. The firm’s quantity targeting decreases the auction price -

at least in auctions that would have ended in overpayment otherwise.

Our dynamic considerations complement the existing literature.5 In a static analysis,

relatively few behavioral buyers suffice to generate a price impact in an auction compared

to a fixed price market (Malmendier and Szeidl, 2020). Considering a dynamic setting,

however, adds downsides to the exploitation incentive. In our application, exploiting

overpaying causes some consumers to drop out of the market, so the firms loses those

consumers’ lifetime value. The firm faces a trade-off between revenue maximization in a

single auction (in a static sense) and customer retention across auctions. Controlling the

learning opportunities that the customer has alleviates this trade-off for the firm. In our

data, the firm can remove the learning stimulus altogether by changing fixed prices, thus

resolving the trade-off.

We demonstrate the need to disentangle customer attrition (extensive margin) from

strategic learning on the platform (intensive margin) and provide an empirical approach to

that end. Customer attrition has recently been studied in the context of eBay auctions

with buy-it-now option (Backus et al., 2022) and in the context of ending a session of

chess on a won or lost game (Avoyan, Khubulashvili and Mekerishvili, 2021). Both papers

analyze psychological reasons for consumer attrition, although they do not study behavioral

5Heidhues and Kőszegi (2018) discuss a lack of dynamic analysis in behavioral industrial organization,
and call for more research on the topic.
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mistakes.

The paper proceeds as follows. In Section 2 we discuss the rules of the multi-unit

descending auctions and further institutional details. In Section 3 we report on data

collection. In Section 4 we describe our data including the empirical evidence on firm

behavior. The model of firm incentives is laid out in Section 5. Section 6 discusses our

empirical strategy. We report estimates of the bidders’ learning response in Section 7.

Section 8 concludes.

2. The Multi-Unit Auctions

The seller uses a televised multi-unit descending price auction embedded in hour-long shows

to sell consumer goods. Each show consists of several auctions for similar products such as

home textiles, men’s watches, or jewelry. The average auction lasts about 11 minutes. The

seller broadcasts auction shows 20 hours a day, via TV (bids submitted by phone) or online

(websites, several apps). At any given time only one auction is held and bids are submitted

into the same auction through different channels.

Bidders can also purchase every product up for auction through an online shop at a fixed

price. The online shop is available on the same website and the apps that also broadcast

the live stream of the auction shows. We therefore view the fixed price as the relevant point

of comparison for bids and auction price.

The auction rules ensure that only people who bid above the fixed price (overbid) also

pay above the fixed price (overpay). At the beginning of each auction, the auctioneer

announces the (initial) number of items to be sold and the auction’s starting bid6. This

starting bid is then gradually lowered over time in discrete increments. Bidders can enter

the auction at the current bid and claim one or more units of the good. The auction ends

when all units are claimed. All bidders pay the lowest successful bid (uniform pricing rule).

Because of this uniform pricing rule, an auction is only overpaid if all bids are overbids.

Shipping costs apply to the fixed price and the auction in the same way. For that reason,

we ignore shipping costs in our analysis. Additionally, bidders who bid by phone have

to pay a flat fee of one Euro. Since research on shipping costs suggests that this fee is

6In their terms and conditions, the firm reserves the right to increase the number of units to be sold even
after an auction has started.
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likely (at least partially) ignored, we do not include this fee when we calculate overpaying

(Hossain and Morgan, 2006). Furthermore, if customers actually internalise the phone

fee, we erroneously assign some bidders to the control group and hence, our approach is

conservative.

3. Data

We scrape data on bids and products from the seller’s website from October 20, 2016, to

January 3, 2019. Since data is removed from the website after some time, we run the

scraping script in hourly intervals.7

First, we access the schedule in the TV programming section of the website. This schedule

gives us information on the show level, such as time and date, product category, and the

auctioneer running the show. Second, we collect auction-level data by going through the

list of all planned auctions. This list contains an auction ID that we use to scrape bids and

bidder nicknames from a separate part of the website. Third, we collect product information

from the online shopping section of the website. Most importantly, we collect the fixed

price of each product at the time of the auction.8

This data collection yields a bidder level panel of 8.48 million bids in more than 69000

auctions spanning over 2 years and 2 months. We use this raw data to calculate several

variables, including the auction price (the minimum of the bids), bidder history variables

that capture typical behavior and past experience on the auction platform, and dummies

indicating whether a bid is an overbid or leads to an overpayment (overpaid).

Table 1 reports summary statistics broken down to the show category level. Naturally,

product categories differ with respect to price and quantity. For example, there are more

than 7 times as many items sold in the household category than in the watches category.

Nevertheless, the two categories are responsible for similar shares of the firms revenue

at 20.5% and 18.3% of total revenue made in the auctions. Unfortunately, we could not

obtain purchased quantity for the fixed price sales channel, but discussions with the firms

management revealed that revenue s overwhelmingly made in the auctions.

7Due to a small coding error we did not collect auction shows at 6, 10 and 11 pm. Other than that, we
observe all shows and within shows all auctions and bids that took place.

8We also collected product ratings, but those are quite sparse at this retailer, so we do not use them.
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Show Category Items Sold Auction Price Fixed Price Revenue Share
Beauty & Wellness 2512517 10.646 15.863 0.170
Leisure & Collecting 20808 54.854 92.173 0.007
Household 2583827 12.497 17.625 0.205
DIY & Gardening 666292 13.534 21.569 0.057
Home Textiles 705398 11.917 16.718 0.053
Fashion & Accessory 987338 22.674 29.302 0.142
Jewelry 674742 42.865 56.709 0.183
Watches 338449 85.259 119.726 0.183

Table 1: Descriptives by Show Category

4. Break in Overbidding and Overpaying

We observe a structural break in the empirical overbidding and overpaying rates in our

data. In Panel A of Figure 1 we plot the probability to overpay conditional on overbidding

aggregated to weekly averages. Initially, the probability to overpay given one has overbid is

roughly 23%, so overbidders are likely to pay for their mistake. Subsequently, we observe a

sharp decline in the conditional probability to overpay given one has overbid from roughly

23% to essentially 0%. We determine the exact date of the structural break with a QLR

test (Kleiber and Zeileis, 2008).9 To illustrate, we add a linear trend on both sides of the

structural break.

Table 2 reports summary statistics split by the structural break, since that is the

defining feature of our data. Before the break, 17% of all bids are overbids. While

the overall probability of overpaying is small at 4%, the probability that this behavioral

mistake becomes payoff-relevant is substantially higher. After the break, the probability

of overbidding collapses to just below 10%, which lowers the probability of overpaying to

essentially 0%. Together, these statistics indicate that before the break consumer learning

is a lot more likely than after the break.

The sharp decline in overpaid auctions coincides with a discrete increase in the number

of products sold in each weak (Panel B in Figure 1). The number of products primarily

increased because the seller conducted more auctions. Fixed prices do not change at the

structural break (Figure 8 and 9 in Appendix G).

9The most probable break-point is the day with the highest individual test statistic, in our case, the 16th
of May 2018. We plot the time series of test statistics in Figure 9 in Appendix G.
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Figure 1: Structural Break
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4.1. Back-of-the-Envelope Calculation

If overpaying causes a demand response, the firm faces a trade-off between extracting

overpaying revenue today and foregone revenue tomorrow. Naturally, extracting overpaying

revenue comes at little to no operational cost, so for the purpose of our back-of-the-envelope

calculation we assume it is profit. Foregone revenue, however, does not equate foregone profit,

so we need to adjust foregone revenues with the gross margin. Our back-of-the-envelope

calculation suggests that extracting overpaying revenue is suboptimal if

Foregone Revenue ·Gross Margin > Avg. Overpayment.
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Table 2: Estimated probabilities of overpaying and overbidding.

before break (N = 4573854) after break (N = 1960103)

overbid
probability 0.17 0.093
average amount 3.6 4.4
median ammount 1.1 1.1

overpaid

probability 0.039 0.0014
average amount 2.5 2.9
median amount 1.1 0.6

overpaid|overbid
probability 0.23 0.015

auctions
average duration (minutes) 11.25 11.9
average product price 27.8 28.2
average auction price 21.3 20.8

In our data, overpaying revenue is small at 2.50AC on average (see Table 2). From the

available balance sheets, we calculate gross margin at 0.256 and 0.268, in 2014 and 2015

respectively.10 To be conservative, we use gross margin at 0.256. Thus, if bidders drop out

for one year, the foregone revenue threshold that renders extraction of overpaying revenues

suboptimal is 9.77AC .

Naturally, foregone revenue may be driven by the intensive and the extensive margin.

We calculate a lower bound by only considering revenue lost from customers dropping out

of the customer base. To quantify revenue lost from customer loss, we assume the customer

abstains from bidding for at least one year. Thus, multiplying average annual spending

with the probability of losing a customer due to overpaying, ϵ, gives the revenue loss due to

overpaying attrition. In our data annual average spending is 360AC in 2017 and 383AC in

2018. This is in line with annual spending of over 300AC as claimed in investor presentations

by the firm.11. Thus, extracting overpaying revenue is suboptimal if

Annual Spending ·Gross Margin · ϵ > Avg. Overpayment.

10The balance sheet data needed to calculate gross margins for later years are unavailable due to a change
in reporting format.

11see https://www.1-2-3.tv/uploads/files/2013_06_123tv%20Company%20Profile.pdf
https://www.1-2-3.tv/uploads/files/2012_10_%20123tv%20Das%20Unternehmen.pdf
https://www.1-2-3.tv/uploads/files/PM_123tv_2014_07_01.pdf, accessed 12.01.2022

11

https://www.1-2-3.tv/uploads/files/2013_06_123tv%20Company%20Profile.pdf
https://www.1-2-3.tv/uploads/files/2012_10_%20123tv%20Das%20Unternehmen.pdf
https://www.1-2-3.tv/uploads/files/PM_123tv_2014_07_01.pdf


Plugging in the numbers yields an epsilon-threshold of ϵ > 0.027. Note that we are using

the conservative numbers for gross margin (0.256) and annual spending (360AC ) to arrive at

this number.

We emphasize that the back-of-the-envelope calculations are conservative for two more

reasons. First, using the annual spending number assumes a lost customer would have

stopped purchasing after one year. Given the high rate of repeat purchases, however, it is

unlikely that customers only stay one year. Second, assigning the full overpaying revenue

to profit may be problematic. In our conversation with the firms management it was hinted

that return rates may be higher for overpaid items: Customers can simply return their

purchase at the overpaid auction price and - if they so choose - repurchase the item at the

fixed price. This would undo the overpaying revenue for the seller and, even worse, impose

costs on the seller who has to deal with the returned item. Unfortunately, we are neither

able to calculate counterfactual auction prices, nor do we have data on average customer

lifetime or return rates.12

5. Firm Incentives

The televised auctions are run jointly by an auctioneer, who is on-screen, and a director,

who is off-screen. The director has access to rich data such as the number of viewers

and revenue broken down by the minute. The director has the authority to "steer" the

auctions progress in a number of ways, but crucially he may increase the quantity even

after the auction has started.13 Management is also aware that overpaying may lead to

unhappy customers, since those customers sometimes call the hotline to complain. We

take this information seriously and use them in our model to capture the trade-off between

overpaying today and customer retention.

We assume every bidder has a latent bid, which is the result of some mapping from

values to latent bids. Whether a bidder hands in her latent bid depends on her behavioral

type. We assume three types of bidders: overbidders, non-overbidders, and dropouts. An

overbidder simply submits his latent bid. A non-overbidder, however, never submits an

12We note, however, that the fixed price is lagging the auction in terms of revenue: management told us
that they make less than 10% of the revenue through the fixed price offering.

13Typical director tasks, for example, include sequencing of the camera feeds or when to show certain TV
overlays.
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overbid by truncating the bidding function at the fixed price. A dropout, as the name

suggests, does not participate in the auction.

Consider an initial overbidder, whose overbid leads to overpayment and thus makes

the mistake salient. In our model, learning happens through type changes. An initial

overbidder may learn not to repeat her mistake by becoming a non-overbidder. We denote

the probability of learning at this intensive margin by ι. Besides learning not to overbid,

we also allow for learning at the extensive margin. There are multiple reasons why a bidder

may cease to participate in the auctions. These include updated beliefs about the utility

from market participation (Backus et al., 2022), updated beliefs about ability (Seru et al.,

2010)14 and consumer antagonism (Anderson and Simester, 2010; Gesche, 2022). We denote

the probability of learning at the extensive margin by ϵ

Figure 3 visualises how latent bids, βi,t, map into actual bids. Even though our analysis

does not rely on functional form assumptions, for ease of illustration we suppose that latent

bids are uniformly distributed in Figure 3. An overbidder simply hands in her latent bid,

which is indicated by the 45° line. Thus, the distribution of actual bids submitted by

overbidders is also the uniform distribution. A non-overbidder, on the other hand, never

hands in a latent bid larger than the fixed price pt. Instead, we assume that non-overbidders

exactly bid the fixed price in the auction, which is why the bid distribution has a mass

point at pt.

We model intensive margin learning narrowly, in the sense that bidders who experience

the consequences of their mistake avoid said mistake in the future. The literature provides

evidence for such a learning dynamic, both in controlled lab experiments on auctions as

well as in field settings other than auctions. In the lab, bidders adjust their bid in the

direction that would have been better in the past (Neugebauer and Selten, 2006). In the

field, customers who pay a fee avoid the action that triggered the fee (Haselhuhn et al.,

2012; Agarwal et al., 2013; Ater and Landsman, 2013).

Suppose there are N = ot+st, bidders in the auction at time t, of which ot are overbidders

and st are non-overbidders. All bidders have unit demand and the same latent bid β > p

for simplicity. Then, the auction price is a function of the number of overbidders and

14In our context, bidders may think they are irredeemably bad or unlucky at bidding, so they should stop
bidding altogether.
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Figure 3: Bids as a function of latent bids. Marginal distribution of bids and latent bids
for uniformly distributed latent bids.

non-overbidders and the auction quantity.

We present a simplified version of our empirical model in Section 6.1 in Appendix A

to illustrate the seller’s incentives arising from changes in type from overbidder ot to

non-overbidder st or dropouts. We simplify the analysis by assuming there are N = ot + st

bidders in the auction at time t and that all bidders have unit demand and the same latent

bid β.15 To make the case interesting, we assume that the latent bid is larger than the

fixed price β > p. Then, the auction price is a function of the number of overbidders and

non-overbidders and the auction quantity.

pa(qt, ot, st) =


β qt ≤ ot

p ot < qt ≤ ot + st

0 ot + st < qt

Choosing a sufficiently small quantity, qt < ot, will ensure that all bids in the auction

are overbids and thus the auction ends in overpayment at pa = β > p. A larger quantity,

ot < qt ≤ ot + st will ensure that non-overbidders also bid in the auction and thus the

15We make the simplifying assumptions here to clearly state the main point, but we drop them in our
empirical analysis.

14



auction price will realize exactly at the fixed price pa = p. Finally, setting quantity larger

than the number of participants leads to an auction price of 0, which is never optimal.

Appendix A presents this model in more detail. Here we restrict ourselves to discussing

the cases where the firm views fixed prices as exogenously given and chooses quantity and

when both variables are chosen simultaneously. This approach is motivated by the fact

that fixed prices where only changed after a new CEO took office, whereas they remained

unchanged at the structural break in our data. This is in line with a model of learning

through noticing where a decision maker may not fully optimize because he fails to notice

an important feature of the optimization problem (Hanna et al., 2014).

Policy 1: Choosing Quantities As discussed above, the director may increase quantity

during the auction, while taking fixed prices as given. Offering extra units in the auction

leads to a downward move along the demand curve in each auction, which lowers prices.16

Overpaying may also be reduced without increasing overall quantity, by shifting quantity

from an non-overpaid auction to an overpaid auction, where both auctions sell the same

good.

We find that in the case of exogenous fixed prices, the seller’s optimal quantity choice

depends on how large overpaying β − p is compared to the discounted revenue lost due to

extensive margin learning ϵ as given by Observation 1.17

Observation 1. Suppose the seller can only choose quantity q and the fixed price p is

exogenously given. If β − p ≥ δ
1−δ · p · ϵ the profit maximizing quantity is qt = ot, ∀t. If

β − p < δ
1−δ · p · ϵ the profit maximizing quantity is any qt ∈ (ot, ot + st], ∀t.

If overpaying is larger than the revenue loss due to extensive margin learning, then

the seller chooses a small quantity and the auctions end in overpaying, pa = β > p. If

the reverse is true, the seller prefers not to extract the extra revenue through overpaying

to preserve future demand and the auctions end at the fixed price. In this setting with

exogenous fixed prices, the sellers can only shut down learning by lowering the auction price

and thus foregoing the extra revenue. Note that the optimal decision does not depend on

16While we observe the number of units sold in each auction, we do not observe the number of units
that were originally planned for the auction. Unfortunately, this means we do not know which auction
increased supply dynamically during the auction.

17The proof is in Appendix B.
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intensive margin learning as taking away the opportunity to exploit overbidding tomorrow

is not an effective deterrent against exploitation today.18

Policy 2: Choosing Fixed Prices and Quantities Since the seller makes most revenue in

the auctions, the fixed-price outside option primarily acts as a reference price. Consequently,

the seller can use adjustments of this reference price as a second instrument to avoid

overpaying.

After our sample ends, the seller raised fixed prices. Initially, the fixed price is set

(presumably very) high and the auction high bid always undercuts the fixed price. After

an auction ends the fixed price is lowered to the auction price plus a small increment for

24 hours. This strategy gives potential customers who missed the auction the chance to

purchase the good at a price below the recommended retail price. For example, an item

may be offered at its recommended retail price of AC30, while the auction starts at AC20.

The auction price may realize at AC 12, and the fixed price falls to AC 15 for 24 hours.19 Since

we did not collect data after the policy change, we cannot check if the fixed prices rose

on average. By construction, the new policy, however, makes overbidding and overpaying

impossible.

Observation 2. If sellers can choose p and q, they maximize their profits by setting p > β

and qt ∈ (ot, ot + st], ∀t.

Observation 2 states that the firm can circumvent revenue losses due to learning, by

setting high fixed prices. Instead of addressing the cause of consumer learning (high auction

prices) the firm can remove the stimulus (overpaid auctions) by adjusting the fixed price.

This policy increases prices without changing quantity and, thus, surplus is redistributed to

the firm.

6. Empirical Strategy

We take a sufficient statistics approach to quantify the extensive and intensive margin

learning rates. We present a structural equation model of how consumers bid at auction

18Observation 1 closely resembles our back-of-the-envelope calculation in Section 4.1
19The short-term rebate on the fixed price may be seen as the price discovery aspect of an auction.
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and how the firm runs the auction. We derive treatment effects that we can estimate

from our data. We explain how to represent our structural equation model as a Directed

Acyclic Graph (DAG)20. We use the DAG representation of our model to show that our

treatment effects are identified. The DAG representation allows us to derive the conditional

independence assumption and the control variables required for identification from our

empirical model using Pearl (2009)’s back-door criterion. We discuss interpretation of our

treatment effects and the assumptions needed to recover extensive and intensive margin

learning rates, ϵ and ι. The strength of this approach is that the treatment effects are valid

under weaker assumptions and we only need additional assumptions on a part of our model

to back-out the structural parameters of interest.

6.1. Empirical Model

We use a general version of our model from Section 5. This model includes bid hetero-

geneity and firm behavior as a function of exogenous shocks. We model bidder learning

parametrically and avoid parametric assumptions on firm behavior and the latent-bid

distribution.

We introduce new notation to describe bidder behavior. We focus on a specific bidder i

whose first overbid is at time t ∈ {1, ...,∞}. We observe this bidder from their first overbid

until the end of our sample. Since this time differs between bidders, we aggregate bidder’s

outcomes over a standardized period of time. We assume that a bidder i’s own bids today

have no effect on bids she faces in the future, so that we can treat different auctions as

independent observations. Thus, the stable unit treatment value assumption is satisfied

and, consequently, the behavior of all other bidders is uncorrelated across auctions. To set

notation, we collect all other bidders in the set Jt = {1, ..., Nt}.

Our model uses exogenous shocks to model empirically relevant sources of heterogeneity.

We assume that in each period, a fixed price shock p̃t, an auction quantity shock q̃t and an

individual specific time-varying shock vi,t realize as independent draws from a continuous

distribution. We assume that these shocks are independent from each other. We model

individual specific unobserved heterogeneity with the time-constant variable ui, which

in our model realizes before any choices are made and is independent across individuals.

20Sometimes also called Causal Graph
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Auction-specific characteristics are denoted by At.

As before, we separate the bidding process into latent (unmodeled) bids and a bidder

type (overbidder, non-overbidder, dropout) that determines the submission of these bids.

We refrain from modelling the process of mapping valuations into latent bids because of

the highly complicated nature of our dynamic auction. For example, bidding would depend

on the observed pace of other bidders bids being submitted, which we neither observe, nor

do we think it adds much to our analysis. We are mainly interested in whether bidders

learn to avoid a specific mistake or drop out of the market. Our approach assumes that

other differences in the bidding process between auctions are independent of the learning

margins we describe.

We let the individual latent bid depend on auction-specific characteristics At, the in-

dividual specific time-varying shock vi,t and the time-constant unobserved heterogeneity

ui. These shocks are i.i.d. from a continuous distribution. We denote the latent bid of

the individual in question by βi,t = β(At, ui, vi,t) and the set of latent bids by the other

bidders by β−i,t = {β(At, uj , vj,t)}, where j ̸= i. Together, the latent bids by bidder i and

competing bidders j ̸= i, βi,t and β−i,t, represent the the latent demand of all bidders in

auction t.

The dependence of βit on auction characteristics, At, models that different individuals

might be interested in different auctions. A special case of this is that most individuals

do not participate in an auction. In this case their latent bid is 0. The dependence on ui

models that different bidders might differ in the amount they usually bid. The time-varying

individual specific shock vit models the main source of heterogeneity for a specific bidder

across auctions.

According to the model in Section 5 and our discussion with management, the firm targets

its quantities and fixed prices to latent bidder demand. While our empirical analysis focuses

on the period before the structural break when the firm likely does not behave optimally, we

still allow for the fixed price pt and the auction quantity qt to depend on latent bids βit and

β−it. Since we do not specify the parametric form of this dependence, we allow for optimal

as well as non-optimal firm behavior in our empirical analysis. Further the firm might tailor

fixed-prices to auction characteristics, e.g. the type of products on sale. We model this by

letting the fixed price and the auction quantity depend on auction-characteristics At. Thus,
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auction quantity (qt) and fixed-price (pt) may depend on these quantities as well as their

specific exogenous shock (q̃t and p̃st).21

pt = c(p̃t, At, βit, β−it)

qt = d(q̃t, At, βit, β−it)

As in Section 5, we assume that a bidder’s bid depends on their type θi,t and their latent

bid βit. The bidder’s type at time t is θi,t ∈ {o, s, d}, where we denote overbidders by o, non-

overbidders by s, and dropouts by d. Since we consider bidders after their first overbid, we

only select overbidders. Overbidders always bid their latent bid βi,t, while non-overbidders

wait until the price drops below the fixed price, that is they bid min{βi,t, pt}. Bidders who

drop out always bid 0. We summarize this behavior in the following bid function.

bi,t = f(pt, βi,t, θi,t) =


βi,t if θi,t = o

min{βi,t, pt} if θi,t = s

0 if θi,t = d

In our empirical model, we allow for heterogeneity in learning rates. Specifically, we

assume that learning rates are time constant, but may differ between individual bidders.

Overpaying turns overbidders into non-overbidders with probability ιi (intensive margin),

and makes them drop out with probability ϵi (extensive margin). We allow for dependence

between these treatment effect parameters and bidder specific shocks ui. In Section 6.2.2, we

assume, for technical reasons, that learning rates are a function of individual characteristics,

ui. This assumption is natural as it still allows bidders of different individual characteristics,

ui, to exhibit different learning rates.

We express the auction’s outcome from the perspective of bidder i in terms of two order

statistics of all other bids (the set β−i,t): the qt-highest and the qt − 1-highest rival bid,

21Think of these shocks as supply shocks that are not captured by auction characteristics At.
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which we denote by b(qt) and b(qt − 1), respectively. The qt-highest rival bid determines if

bidder i wins, and the qt−1-highest rival bid influences the auction price. The auction ends

when all products are sold, and the lowest successful bid determines the price. Bidder i

loses the auction if all qt units are sold to bidders in Jt, that is, bidder i loses if bi,t < b(qt).

Conversely, bidder i’s bid is successful if bi,t > b(qt). In this case, there are qt − 1 units

that remain for the competing bidders included in Jt. The lowest successful bid is then

either by the bidder in question or the lowest successful bid by the other bidders (b(qt− 1)).

If bidder i places a winning bid, the auction price is min{bi,t, b(qt − 1)}. We define an

overbid as a bid that is strictly larger than the fixed price bi,t > pt. Similarly, we call a

bid a non-overbid when it is strictly smaller than the fixed price bi,t < pt. An auction is

overpaid when all bids are overbids and that means that the auction price is higher than

the fixed price, or min{bi,t, b(qt − 1)} > pt.

While we use our parametric assumptions on bidding behavior to interpret our treatment-

effects, we do not need parametric assumptions to estimate these effects. For this purpose, we

summarise our model as a system of non-parametric structural equations. Each structural

equation expresses a left-hand side variable in terms of other variables and exogenous

shocks. This model is non-parametric in the sense that we do not use any functional form

assumptions on the right-hand side.

pt = c(p̃t, At, βit, β−it) (1)

qt = d(q̃t, At, βit, β−it) (2)

βi,t = β(At, ui, vi,t) (3)

b(qt) = f(qt, pt, β−i,t, θ−i,t) (4)

overbidi,t = g(βi,t, b(qt), b(qt − 1), pt, θi,t) (5)

non− overbidi,t = v(βi,t, b(qt), b(qt − 1), pt, θi,t) (6)

overpaidi,t = v(overbidi,t, b(qt), pt) (7)

We briefly go through each equation and relate it to the previous discussion. We

explicitly introduced Equation 1 to 3 in the preceding section. Equation 1 and 2 describe
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the information set of the firm when setting auction parameters. One model that fits these

equations is the simplified model from Section 5. Since these equations do not assume

any structure, they nest all (optimal and non-optimal) firm policies that condition fixed

prices and quantities on a signal of latent demand, βi,t and β−i,t, and auction-specific

characteristics, At. Equation 4 summarizes the order statistics of the rival bidder’s bids,

that determines whether a bid is a winning bid. Equations 5 to 7 apply the auction’s rule

to this section’s expression of bidder’s successful bids (bi,t). We will introduce parametric

versions of Equations 5 to 7 in the next section. According to Equation 5, an overbid is an

observed variable (as governed by the order statistic). We will refer to overbids regardless

of observation status as latent overbids throughout the text.

6.2. Interpretation of Treatment Effects

Recall that we consider the first overbid for each bidder in our sample (if there is any). That

means we look at overbidders and would like to quantify type changes to non-overbidder or

dropout. A bidder who changes type from overbidder to dropout just leaves the market.

Consequently, we should observe fewer overbids, as well as fewer non-overbids in this case.

A bidder who changes from overbidder to non-overbidder type, however, just avoids overbids

in the future and bids at the fixed price whenever the latent bid is a latent overbid. Hence,

bidders who become a non-overbidder bunch at the fixed price. We exclude the fixed price

by focusing on strictly defined non-overbids. Thus, a first starting point to test for extensive

margin learning is to estimate the treatment effect of overpaying on strict non-overbids.

To see this in more detail, reconsider Figure 3 from Section 5, where we depict bids as

a function of latent bids and bidder type. As an example we depict a marginal uniform

distribution of latent bids underneath the x-axis. The figure also shows the resulting

marginal density of bids to the left of the y-axis. Non-overbidders bid at the fixed price for

all latent bids larger than the fixed price, so the density of bids has a mass point at the

fixed price and has zero mass at bids above the fixed price. Strictly below the fixed price,

the density is identical to that of overbidders. A dropout maps all latent bids to the zero

bid (not depicted in Figure 3).

Figure 3 illustrates what we can learn about latent changes in type from changes in

the observed bid distribution. Bids strictly below the fixed price (strict non-overbids) are
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submitted by overbidders and non-overbidders and bids strictly above the fixed price (strict

overbids) are only submitted by overbidders. Latent bids below the fixed price (pt) directly

translate into observed bids. Latent bids above the fixed price bunch at the fixed price

for non-overbidders and directly translate into observed bids for overbidders. Bids at the

fixed-price are composed of bunched overbids by non-overbidders and latent bids at the

fixed price by both non-overbidders and overbidders.

Since strict overbids are only submitted by overbidders a decrease in these bids indicates

a reduction in overbidders. Intensive as well as extensive margin learning can cause such a

decrease. Since strict non-overbids are submitted by overbidders as well as non-overbidders,

a decrease in these bids indicates extensive margin learning (overbidders leaving the auction).

Bids directly at the fixed price increase when there are more non-overbidders and decrease

when there are more overbidders. Consequently these bids increase with intensive margin

learning and decrease with extensive margin learning. We focus on treatment effects of

overpaying on strict overbids and strict non-overbids, in order to recover the extensive and

intensive margin learning parameters, ϵi and ιi.

The only way to observe a non-overbid is a latent non-overbid (βi,t < pt), which is

successfully submitted (βi,t > b(qt)), either by an overbidder or a non-overbidder. Thus, the

treatment effect of overpaying on non-overbids in the next period is the expected extensive

margin learning parameter scaled by the probability of a successful strict non-overbid. We

calculate this effect conditional on ui. This conditioning renders ϵi and the latent bid

independent and thus allows the factorization. Since we are interested in learning as a

response to overpaying, we also look at the most narrow way to avoid overpaying, which

is learning not to overbid. In our model only overbidders submit overbids. Thus, a type

transition from overbidder to non-overbidder, as well as dropping out reduces overbidding.

Consequently, the treatment effect of overpaying on overbidding in the next period is given

by the sum of learning at both margins multiplied by the probability of a latent successful

overbid.

Proposition 1. The treatment effects of overpaying in t on the number of non-overbids
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and number of overbids in t+ 1 take the following form.

E[TEt+1
non−overbid|ui] = −E[ϵi|ui]P(pt+1 > βi,t+1 > b(qt+1))|ui)

E[TEt+1
overbid|ui] =− E[ϵi + ιi|ui] · P(βi,t+1 > pt ∧ βi,t+1 > b(qt+1))|ui)

Proposition 1 reminds us that the treatment effect of overpaying on the number of

overbids is a function of learning rates at the extensive margin and intensive margin. To

disentangle the two margins it would be sufficient to divide the treatment effect by the

probability of observing a latent overbid (non-overbid) and taking the difference of the

two treatment effects. It turns out that the probability of observing a latent overbid

(non-overbid), is simply the potential outcome of the untreated.22 In Subsection 6.2.2, we

explain how the analysis is complicated by the fact that we need to pool observations in

order to estimate the treatment effects. Before we get to pooling of observations we explain,

however, how a shift in the latent bid distribution as a result of overpaying would change

our results.

6.2.1. Shift in Latent Bid Distribution

Bidders may react to overpaying in more general ways than the two adjustments we impose,

truncating the bid function at the fixed price or dropping out. Suppose, for example, that

a bidder, who overpays, may, in addition to truncating their bid function at the fixed price,

increase the shading of their bid. Shading one’s bid as a reaction to overpaying is a natural

adjustment: the auction price a bidder has to pay is weakly lower than her bid and so

shading said bid reduces payments.

We show an example of such a bid shading adjustment in Figure 4. Instead of simply

truncating, the additional bid shading shifts the bid function downward (in red). This is,

of course, a departure from the behavioral type change to non-overbidder we impose (in

blue), so it’s worth reviewing how this would impact our results. The treatment effect of

overpaying on future overbids is unchanged since the bidder truncates her bid function at

22We can calculate this potential outcome of the untreated from our regression in Section 7 by setting the
treatment dummy to 0 and all other variables to the sample mean.

23



βi,t

bi,t

non-overbidder
non-overbidder with bid shading

pf,t

βqt

− +

Figure 4: Truncating and shading bids as response to overpaying. Some latent bids are
shaded out of the auction (−) and some that were otherwise mapped to the fixed
price are now shaded in to the non-overbid region below the fixed price (+).

the fixed price, pf,t, as before. A difference may arise when we consider the treatment effect

on non-overbids, which are strictly smaller than the fixed price. Some latent bids that are

mapped to the fixed price are now handed in below the fixed price due to the additional

bid shading. This is the interval marked with + in Figure 4. On the other hand, some bids

close to the lowest competing bid in the same auction, βqt are pushed below this lowest

competing bid and thus are not handed-in in the auction — these bids are losing because

of the bid shading. In Figure 4 these latent bids are in the interval marked with −.

How well our approach using two behavioral types to capture learning works in the

presence of unmodeled bid shading depends on the relative size of the intervals marked

with + and −. In Figure 4, we depict the case of a linear bid function (and a uniform

distribution of latent bids). As it turns out, the intervals + and − cancel exactly. In this

case, imposing the assumed changes in behavioral types is a good approximation of this

more general adjustment of truncating and shading the bid function.

Proposition 2 discusses the effect of bid shading on our estimation strategy for arbitrary

latent bid distributions. Here, the difference in shaded, P′ and non-shaded bid distributions,

P, may be negative or positive. If bid shading shifts more bids below the fixed price than

it pushes out of the auction, the difference of the shaded and non-shaded distributions

is positive and thus we would underestimate the extensive margin using our two-type

approximation. If, on the other hand, bid shading prices more latent bids out of the auction
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than it pushes bids below the fixed price, the difference in bid distributions is negative,

P′(.) − P(.) > 0,. In this case, our approach mis-attributes some of the bid shading to

dropouts and thus we would overestimate the extensive margin.

Proposition 2. If non-overbidders shift their distribution of latent bids compared to

overbidders, the treatment effect of overpaying on non-overbids in the next period is given

by,

E[TEt+1
non-overbid] = −E[ϵi|ui] · P(pt+1 > βi,t+1 > b(qt+1)|ui)

+E[ιi|ui] ·
[
P′(pt+1 > βi,t+1 > b(qt+1)|ui)− P(pt+1 > βi,t+1 > b(qt+1)|ui)

]︸ ︷︷ ︸
Shift in latent bid distribution

,

where P ′ is a probability calculated from the latent bid distribution of non-overbidders and

P is a probability calculated from the latent bid distribution of overbidders.

The proof of this result is in Appendix C.

In the eyes of the firm’s management, these differences are somewhat muted. In one case

the firm loses a sale because a consumer drops out of the market. In another case, the firm

loses a sale because a consumer shades her bid so much that she does not bid in the auction

anymore — effectively dropping out. In particular, a consumer who always bid very low,

say 1AC , is observationally indistinguishable from a consumer who does not take part in the

auction.

6.2.2. Pooling of Observations Over a Period of Time

Our analysis, so far, focuses on treatment effects of overpaying in t for outcomes of interest

in t+ 1, i.e. for the next auction. Bidders do not generally take part in every auction, so

we need to pool observations over a period of time in order to estimate treatment effects.

To calculate a pooled treatment effect, we simply sum over the treatment effect in t+ k,

where k covers the period of time over which we are pooling observations. The derivation

of the period t+ k treatment effect is largely similar to the treatment effect in t+ 1, but

for the possibility of subsequent treatments.

Subsequent treatments may occur in both the treatment and the control group. In

the control group, subsequent treatments are likely since overbidders did not have the
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opportunity to learn in period t (they are the control after all). In the treatment group,

subsequent treatments may happen, whenever bidders do not learn from their initial

treatment — either by chance or because their learning rate is small. The subsequent

treatments in control and treatment group bias our results in opposite directions: including

treated bidders in the control group biases downwards, while multiple treatments in the

treatment group increases the likelihood of finding a learning effect.

In Proposition 3 we show that the treatment effects are attenuated rather than exacerbated

by the possibility of subsequent treatments due to pooling over a period of time. The

intuition behind Proposition 3 is that subsequent treatments are more likely to occur in the

control group than in the treatment group. This is the case, as a bidder in the treatment

group can only receive an additional treatment if he fails to learn from the first treatment.

No such condition applies for subsequent treatments of the control group and, thus, our

results are conservatively estimated.

Proposition 3. Let pl,k denote the probability that a bidder changes his type from overbidder

to dropout because of a treatment in subsequent periods t+ 1 to t+ k. Similarly, let ps,k

denote the probability that a bidder changes type from overbidder to non-overbidder due to

a treatment in periods t+ 1 to t+ k. Then, the treatment effect of the initial treatment in

period t on non-overbids and overbids in period t+ k is given by the following expressions.

E[TEt+k
non-overbid|ui] = E

[
− ϵiE[pl,k|ϵi, ιi, ui]|ui

]
P(pt+k > βi,t+k > b(qt+k)|ui)

E[TEt+k
overbid|ui] = E[−(ϵi + ιi)E[pl,k + ps,k|ϵi, ιi, ui]|ui]P(βi,t+k > pt+k ∧ βi,t+k > b(qt+k)|ui)

The proof of this result is in Appendix D. Note that the t+ k period treatment effects in

Proposition 3 are identical to the corresponding t+1 period treatment effects in Proposition

1, but for the scaling factor E[pl,k|ϵi, ιi, ui] and E[pl,k + ps,k|ϵi, ιi, ui], respectively. Since

these factors are conditional probabilities, they are (at least weakly) smaller than 1 and thus

the treatment effects in later periods are attenuated rather than exacerbated by subsequent

treatments due to pooling of observations.

To back out the extensive and intensive margin learning parameters, ϵi and ιi, from

the pooled treatment effects, we assume that individual heterogeneity in learning rates is
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a function of the unobserved individual characteristics, ui. This restricts learning rates

to be homogeneous for individuals with the same unobserved individual characteristics.

Formally, we denote E[ϵi|ui] = ϵu and E[ιi|ui] = ιu and we call it heterogeneous-learning-

rates assumption. We need to make this technical assumption since our pooled treatment

effects do not factorize otherwise. The heterogeneous-learning-rates assumption is natural,

since it still allows heterogeneity in learning rates along the heterogeneity in individual

characteristics, ui.

Recall, that the treatment effect in Proposition 1 is just the conditional expectation

of the extensive margin learning parameter, E[ϵi|ui], scaled by the probability to observe

a latent non-overbid. Untreated individuals are still participating in the auctions and

submit their overbids, so dividing our treatment effect by the potential outcome of the

untreated E[non − overbidt+1
t (0)|ui], yields the conditional expectation of the extensive

learning parameter.

E[TEt+1
non−overbid|ui]

E[non− overbidt+1
t (0)|ui]

=
−E[ϵi|ui]P(pt+1 > βi,t+1 > b(qt+1))|ui)

P(pt+1 > βi,t+1 > b(qt+1))|ui)
(8)

= −E[ϵi|ui] (9)

It remains to account for the pooling of observations to estimate the effect. In Proposition

3, we provide expressions for the treatment effect in some subsequent auction t+k. Summing

over these treatment effects gives us the treatment effect that we estimate from pooled

data. Proposition 4 provides these sums over the treatment effects on non-overbids and

overbids divided by the appropriate potential outcome as shown in Equation 8. The proof

is in Appendix E.

Lemma 4. Suppose individuals are treated at time t ∈ {1, ...,∞} and we aggregate our

treatment effects over the following k ∈ {1, ...,∞} periods. Then the treatment effects

divided by the potential outcomes are given by the following expressions:

Σk
m=0E[TEt+m

non-overbid]

Σk
m=0E[non-overbidt+m

t (0)|ui]
=

Σk
m=0E[−ϵiE[pl,m|ϵi, ιi, ui]|ui]
Σk
m=0E[E[pl,m|ϵi, ιi, ui]|ui]

Σk
m=0E[TEt+m

overbid]

Σk
m=0E[overbidt+m

t (0)|ui]
=

Σk
m=0E[−(ϵi + ιi)E[pl,k + ps,k|ϵi, ιi, ui]|ui]

Σk
m=0E[E[pl,k + ps,k|ϵi, ιi, ui]|ui]

.
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Unfortunately, the expressions in 4 do not immediately simplify because the probabilities of

subsequent treatment (pl,k and ps,k) are functions of the corresponding learning parameters

(ϵi and ιi). Consider, for example, the expression E[ϵiE[pl,m|ϵi, ιi, ui])|ui], where E[ϵi|ui]

does not factor out as ϵi and E[pl,m|ϵi, ιi, ui] are dependent.

Assuming that ϵi is a function of the individual characteristics ui solves this problem and

allows us to recover ϵi from the pooled treatment effects. This assumption effectively means

that we are restricting individual heterogeneity in learning rates ϵi and ιi to be captured

by heterogeneity in individual characteristics ui. In other words, we have to assume that

learning rates are homogeneous for every value of individual characteristics, ui. As a short

hand for this assumption we write E[ϵi|ui] = f(ui) = ϵu. Corollary 5 shows that using this

assumption our expressions from Proposition 4 simplify and we can recover the learning

parameters ϵu and ιu from our treatment effects.

Proposition 5. Under the heterogeneous-learning-rates assumption, heterogeneity in learn-

ing is restricted to the heterogeneity in individual characteristics, that is, E[ϵi|ui] = ϵu

and E[ιi|ui] = ιu.Then, we can recover the learning parameters ϵu and ιu from the pooled

treatment effects.

Σk
m=0E[TEt+m

non-overbid]

Σk
m=0E[non-overbidt+m

t (0)|ui]
= ϵu

Σk
m=0E[TEt+m

overbid]

Σk
m=0E[overbidt+m

t (0)|ui]
= ϵu + ιu

Note that the probabilities of subsequent treatments pl,k and ps,k depend on the time

period we pool over. Thus, violations of the assumption in Corollary 5 should lead to

incongruous results, when we pool over different time periods. Indeed, in Section 7 we show

that our results do not depend on the pooling period used.

6.3. Identification of Treatment Effects

After clarifying the connection between estimable treatment effects and the learning param-

eters of our underlying model in the previous section, we now turn to the identification of
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those treatment effects. Recall that a bidder is assigned to the treatment (control) group

when his first overbid (did not) lead to overpayment and that whether an overbid leads

to overpayment is entirely determined by the rival bidders in that auction. A remaining

concern with this design is selection into treatment. This is an issue if, for example, bidders

who learn well select into watch auctions, while bidder who do not learn well spread out

evenly over all product categories. For a rigorous analysis of this logic, we represent our

empirical model in Equation 1 to 7 as a causal Directed Acyclic Graph (DAG).23

The DAG representation illustrates the causal relationships implied by the structural

equations model and allows us to compute a set of control variables to satisfy the conditional

independence assumption required for identification. In our case, identification depends

in part on unobserved bidder characteristics, so we conclude with a discussion of how we

can implement our identification strategy using past bidder behavior as a proxy for this

unobserved variable.

In a DAG, a directed edge (an arrow) indicates a causal relationship, that is, the node

where the arrow originates is a cause of the node that the arrow points to. For example,

if we draw an arrow from overpaidi,t to overbidi,t+1, we show that our model allows for

a causal effect of overpaying on overbidding in a subsequent auction. In our context, the

fact that DAGs do not contain any cycles has an economic interpretation: bidders are

myopic. Otherwise, future auctions would influence bidding behavior in today’s auction,

which would lead to a cycle in our graph. This assumption is in line with other behavioral

economics auction papers such as Malmendier and Lee (2011). We try to explain the theory

on DAGs as we go along.24

To generate a DAG from our empirical model in Section 6.1, we go through each equation

and draw an edge from each right-hand side variable to each left-hand side variable.25 We

leave out exogenous shocks for ease of exposition26 and draw boxes around variables that

are observable. The procedure results in the DAG depicted in Figure 5.

We use yi,t+1 as a stand-in for the outcomes we are interested in: revenue and number of

23To put it precisely, we interpret our Structural Equation Model (SEM) in Section 6.1 as a Structural
Causal Model (SCM).

24For a gentle introduction, see chapter 3 of Cunningham (2021).
25See, for example, Peters, Janzing and Schölkopf (2017) for a more complete treatment of the connection

between DAGs and Structural Causal Models.
26This is without loss of generality because these shocks are exogenous by assumptions, so no edges point

to these nodes.
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overbids and non-overbids in subsequent auctions. We focus on time period t and display

arrows pointing from t to t+ 1 only in a stylized way. In particular, the path ui → yi,t+1

abstracts from the fact that this causal relationship is again channeled through the bidding

process. This simplification is without loss of generality, since ui is the only connection

between behavior in t and t + 1. We also abstract from bidding behavior before t. We

restrict our data set to behavior after the first overbid in t. This restriction selects only

bidders who are overbidders in t and thus, there is no remaining variance in the bidders

behavioral type, θi,t, and we can omit it form the DAG.

In a DAG, the paths where all arrows point from the treatment to the outcome variable

are called front-door paths, or causal paths. This is the causal relationship of interest, in

our case overpaidi,t → yi,t+1. There are also paths from the treatment to the outcome,

where at least on arrow points in the opposite direction, called back-door paths. In our

case, all other paths from treatment to outcome are back-door paths, since every path other

than the causal path starts with an arrow pointing to overpaidi,t (instead of originating

from it). The main idea of proving identification in a DAG is to select control variables to

block all back-door paths.

Panel A of Figure 5 shows the origin of our causal graph. The arrows in blue encode

institutional knowledge about our setting. For example, the director of the auction sees

latent demand and can choose quantity accordingly, so there are arrows from the latent bids

βi,t and β−i,t to quantity qt. Similarly, the seller incorporates that auction characteristics

will have an impact on demand, quantity and fixed prices when planning the auction so

there are arrows from auction characteristics, auctiont, to latent demand, βi,t and β−i,t,

quantity, qt, and the fixed price pf,t.

The arrows in violet depict the auction rules, namely uniform pricing and our definitions

of overbidding and overpaying. The order statistic β
(qt)
−i,t determines winning bids and what

price winning bidders have to pay. As bidder i has to beat the qt-highest rival bids to win

the auction, the order statistic has arrows incoming from qt and β−i,t. We only observe

winning bids and consider initial overbids for each bidder, so there is an arrow from the

order statistic to overbidi,t. Together with the fixed price it is determined whether the

overbid leads to overpayment.

Finally, the arrows in orange depict substantial economic assumptions. Considering only
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initial overbidders i means we can omit the behavioral type of those bidders from the DAG.

Rival bidders, however, may be non-overbidders, so the fixed price has an influence in

whether rival bidders hand in their latent bids. Thus, we draw an arrow from the fixed price

pf,t to the order statistic of handed in bids β
(qt)
−i,t. Finally, we assume that latent bids today

and latent bids tomorrow are connected by individual characteristics. Since we abstract

away the bidding process in t+ 1, we end up with arrows from individual characteristics

ind.chari to latent bids βi,t and our outcomes of interest yi,t+1.

Our effect of interest is the black arrow from overpaidi,t to outcome yi,t. Threats to

identification are posed by, so-called, back-door-paths, which are paths that start with an

arrow going into our treatment indicator overpaidi,t and go to the outcome yi,t+1, but not

through the the direct arrow. The back-door paths consist of two patterns: confounders

(e.g. ← auctiont →) and colliders (e.g. → overbidi,t ←).27 A back-door path through a

confounder is blocked if we control for that confounder. A back-door path through a collider

is blocked if we do not control for that collider, instead it is undesirably opened (in DAG

lingo) if we control for the collider (cf. bad control problem Angrist and Pischke (2009)).

In Panel B of Figure 5, an adjustment set that blocks confounder paths is highlighted in

blue. That is, we block all confounder paths if we include the set {overbidi,t, At, qt, pt} as

control variables in our regression. We control for auction price and quantity directly and

we operationalize auction characteristics using fixed effects such as weekday, week, hour,

product category and auctioneer fixed effects. Additionally, we condition on overbidi,t as

we only look at bidders first overbids. This conditioning on the first overbid, however, is

not without drawbacks. Indeed, Panel B in Figure 5 delineates the collider path that is

opened by restricting the analysis to first overbids: β
(qt)
−i,t → overbidi,t ← βi,t. That is, by

conditioning we on overbidi,t we leave open the possibility that bidders with high latent

bids select into similar auctions and that this drives treatment.

Fortunately, the same graph also shows that the collider path also passes through

individual bidder characteristics ui. In fact, all back-door paths go through ui, so we

could block them all by simply conditioning on ui. While this is an elegant solutions, it is

complicated by the fact that ui is unobserved. Thus, we have to rely on proxies that are,

by definition, imperfect. The variable ui mainly determines the height of a bidder’s latent

27Readers interested in graph theory will recognize these patterns as forks and inverted forks.
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bid. Thus, variables such as the average amount of a bidder’s past behavior and experience

in the auctions are very informative about individual characteristics. We calculate bidder

history variables, both for bidder i and the rival bidders (see Appendix F).

β
(qt)
−i,t

β−i,t

auctiont

βi,t

overbidi,t

overpaidi,tpf,t

qt

ui

yi,t+1

(a) Origin of the DAG

β
(qt)
−i,t

β−i,t

auctiont

βi,t

overbidi,t

overpaidi,tpf,t

qt

ui

yi,t+1

(b) Collider Path

Figure 5: Panel (a) shows the origin of the DAG: Seller planning and running the auction
(blue), Auction rules (uniform pricing, violet), Economic Assumptions (orange).
Panel (b) shows that the collider path (red) opened by conditioning on overbidi,t
(blue) also goes through ind.chari.

We formalize our empirical strategy with the back-door criterion (Theorem 3.3.2 in Pearl

(2009)). As we have shown {ind.chari, auctiont, pt, qt, overbidi,t} or {ind.chari} block all

back-door paths. Thus the causal effects of overpaying on future overbids and future

non-overbids are identified and can be computed by controlling for these variables. This

statement is equivalent to the statement that our potential outcomes are independent

conditional on {ind.chari, auctiont, pt, qt, overbidi,t} or {ind.chari}.

7. Regression Results

We adjust for overbidding by restricting the sample to the first overbid for any customer.

These initial overbids can be in an auction that ends below or above the fixed price. Bidders

whose initial overbid was in an overpaid auction overpay and are in our treatment group.

Bidders whose initial overbid was not in an overpaid auction do not overpay and form

the control group. We follow these bidders for 90 days after their first overbid and count

the number of overbids and non-overbids during that period. We exclude data after the
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structural break, because overbids are much less likely due to firm policy after the break

(see Figure 1).

To estimate the treatment effects in Proposition 4, we run the regression in Equation 7

on the sample of bidders first overbids.

Yi,t+k = β1overpaidi,t + β2pt + β3qt +Hi,tB1 +H−i,tB2 +At + ηi,t+k

Here, overpaidi,t indicates treatment when the first overbid of bidder i in auction t lead

to overpayment. Following our analysis of the causal graph in Section 6, we control for the

auction price pt, auction quantity qt and a set of history controls as proxies of individual

characteristics. We include bidder history variables, such as the average bid before the first

overbid, both for bidder i, Hi,t, as well as the rival bidders in the same auction, H−i,t. The

full set of bidder history controls is described in detail in Appendix F. We use weekday,

week, hour, product category, and auctioneer fixed effects to capture auction characteristics,

At. Treatment is assigned at the auction level, so we cluster standard errors at the auction

level (Abadie, Athey, Imbens and Wooldridge, 2017).

The variable Yi,t+k is a stand-in for revenue and the number of overbids and number

of non-overbids in a k day long period. We use 0 to 90 and 90 to 180 days after the first

overbid to provide estimates with a varying time frame. Finding similar results should

reinforce confidence in the assumptions needed to recover the learning rates from the pooled

treatment effects as argued in Corollary 5. We also report regressions excluding the history

controls.

Table 7 shows the results of our revenue regressions. We find overpaying reduces revenue

by roughly 9.95AC in the first 90 days after treatment. Compared to the revenue threshold

we calculate in Section 4.1 this effect is sufficient to determine that the extraction of

overpaying revenues was indeed suboptimal. The results for the period 90-180 days after

the treatment are qualitatively similar, suggesting additional revenue loss of 7.31AC , albeit

statistically insignificant (see Appendix H).

We also consider the number of overbids and non-overbids in our regression analysis, as

this allows us to back-out the underlying learning rates from our three-type model. Table 7

reports the results of these regressions. The first row reports the causal effect of overpaying
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Table 3: Overpaying Reduces Future Revenue

Revenue Revenue

Overpaid −5.079 −9.955**
(3.981) (4.852)

Num.Obs. 115 295 71 261
R2 0.043 0.100
Counterfactual Mean 138.206 160.407
Bidder History No Yes
Window 0-90 0-90

* p < 0.1, ** p < 0.05, *** p < 0.01
Overpaying reduces revenue in the 90 days after
treatment by 9.95AC . This revenue effect is larger
than the revenue threshold we calculate in Section
4.1 of 9.77AC and we find further revenue effect
for the period of 90-180 days after treatment (see
Appendix H.

Table 4: Overpaying Reduces #Overbids and #Non-Overbids

# Overbids # Overbids # Non-Overbids # Non-Overbids

Overpaid −0.171*** −0.190*** −0.185* −0.288**
(0.032) (0.034) (0.110) (0.127)

Num.Obs. 115 295 71 261 115 295 71 261
R2 0.074 0.131 0.071 0.154
Cf. Mean 1.433 1.62 5.796 6.854
Bidder History No Yes No Yes
Window 0-90 0-90 0-90 0-90

* p < 0.1, ** p < 0.05, *** p < 0.01
The negative impact of overpaying on number of overbids indicates treated bidders repeat
their mistake less often than untreated. Larger negative effect on number of non-overbids is
evidence of adjustment at extensive margin.
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on future overbids and non-overbids. The row labelled counterfactual mean reports the

fitted value for the regression with all variables set at their means and overpaid set to zero.

With the full set of controls we find that overpaying decreases overbids in the following 90

days by −0.19 (compared to a counterfactual mean of 1.62) and non-overbids by −0.288

(compared to a counterfactual mean of 6.8). Results for the time period 90-180 days after

treatment are similar (see Appendix H).

We assess our strategies of using bidder histories to proxy for ui by looking at coefficient

movements when adding these variables. Since our proxies have a good theoretical justifi-

cation (high bids in the past are likely a good indicator of a tendency for high bids), our

estimates should move closer to the truth when controlling for these proxies. Thus, if the

magnitude of our estimates increases when we add the proxies, it should increase even more

if we could actually control for ui (see Oster, 2019, for a formalisation of this argument).

Adding history controls (our proxies) increases the magnitude of our coefficient estimates.

We take this as evidence that our identification strategy works well.

We recover the extensive and intensive margin learning rates as laid out in Corollary 5.

Since we have to pool auctions to make estimation feasible, the expressions in the Corollary

rely on the time period we aggregate over. Using two different time periods affords us a

plausibility check: if the results are consistent it reinforces our confidence in the validity of

our assumptions.

We report the backed out learning rates in Tables 5. We repeat the exercise using a

Poisson regression model to complement the linear regression (the corresponding regression

Tables are in Appendix I). The results are quite consistent between the two periods of

time and the different regression methods, affirming our confidence in the heterogeneous-

learning-rates assumption. We estimate the average overbidder has an extensive margin

learning parameter of approximately 4% and an intensive margin learning parameter of

approximately 7%. In other words, overpaying causes roughly 4% of overbidders to drop

out of the market due to overpaying. This suggests extracting the extra overpaying revenue

in the beginning of our sample was indeed suboptimal (the extensive margin threshold

in Section 4.1 is 2.7%). This reinforces our conclusion from the revenue regressions that

extracting overpaying revenue is indeed suboptimal.
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Table 5: Backed out Learning Rates

Linear model ϵu ιu

0-90 0.042 0.075
90-180 0.041 0.062

Poisson model ϵu ιu

0-90 0.039 0.075
90-180 0.033 0.066

8. Conclusion

We find evidence for extensive as well as intensive margin learning as overpaying decreases

future overbids and non-overbids. We use our model to recover extensive and intensive

margin learning from these treatment effects. The causal effects imply that roughly 4% of

bidders who overpay learn to drop out of the market (extensive margin), and about 7% of

bidders who overpay learn not to overbid (the intensive margin).

A simple economic model teaches us how the firm should react to learning at these

margins. We model an increase in firm sophistication by a broader scope of optimization:

initially, the firm behaves sub-optimally, exploiting extra revenue from overpaying. Then,

the firm behaves optimally along the quantity-adjustment margin, but treats fixed prices

as exogenous, even though it has control over fixed prices. Finally, the firm chooses fixed

prices and quantity optimally. If fixed prices are exogenous and extensive margin learning

is high, the firm offers quantities that prevent overpaying. On the other hand, if the firm

endogenously chooses fixed prices, it sets them high enough to prevent overbidding entirely,

while still achieving a high price in the auction.

We make a number of observations that are in line with our model. First, we observe a

period with overpaying in the market, followed by a sudden elimination of overpaying and

increased quantity. This is in line with the initially suboptimal behavior of the firm and a

policy change to target optimal quantity dynamically in the auctions, while keeping fixed

prices unchanged. Second, we document a policy change after our sample ends. The new

policy increases fixed prices and undercuts these higher prices with the auction’s starting

bid, and thus, ruling out overbidding by definition. This policy is in line with our model

with endogenous fixed prices.

We find that strategic learning and leaving the market are roughly equally likely. This

finding unites the literature on learning (Haselhuhn et al., 2012; Agarwal et al., 2013; Ater

and Landsman, 2013) and customer retention (e.g. Seru et al., 2010; Backus et al., 2022;
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Anderson and Simester, 2010). From the perspective of the learning literature, consumers

try to avoid the action that had negative consequences: they avoid overbidding because

they overpaid. According to the literature on customer retention, they might also leave the

market. Bidders might leave the market because they learn about their abilities as bidders

or the value of participating in auctions. They can also become angry and leave the market.

That the firm is shaping this learning process is a novel reason for the persistence of

consumer biases. The previous literature finds that firms can exploit consumer biases

because consumers forget what they have learned (Agarwal et al., 2013), or new naive

consumers replace experienced ones (Wang and Hu, 2009; Augenblick, 2016). We document

that biases may also persist because firms make learning harder, when it is profit maximizing

to do so. Our results on firms shaping consumer learning can explain market design choices

and suggests possible avenues for regulating this behavior.

Complementing previous results, we find that when biased consumers learn, market-like

institutions might be preferable to multiple single-unit auctions. Malmendier and Szeidl

(2020) argue that firms want to sell several goods in individual auctions to fish for fools. In

single-unit auctions, the highest bidder (likely upward biased) sets the price, whereas, in

markets (and in the market-like auction we study), a larger share of biased buyers is needed

to influence the price. According to Malmendier and Szeidl (2020) choosing individual

auctions maximizes period profits. We show, however, that this may cost the firm customers

because more individual auctions end overpaid. Consequently, sellers should be more likely

to choose markets when bidders learn.

Firms can shape consumer learning in two ways: ways that benefit and ways that harm

consumers.28 According to our model, consumers are worse off when firms can change

reference prices. In this case, the firm can remove the learning stimulus without benefiting

the consumer. If the reference prices are exogenous, the firm prevents consumer learning

through lower prices, which is in the interest of consumers.

In our setting, reference price regulation can constrain a firm’s harmful ways of shaping

consumer learning. For example, a regulator could mandate a minimum revenue share

through sales at fixed prices. While the practical implementation of such a policy is

28We do not model consumer preferences. Consequently, our only criterion for welfare analysis is that a
lower price for the same quantity is good for consumers.
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uncertain, it diminishes a firm’s ability to raise fixed prices. Consequently, firms have to

shape consumer learning through higher quantities, which benefits the consumer. There

are already other types of reference price regulation. In Germany, for example, firms that

advertise undercutting a reference price need to offer that reference price for a sufficient

amount of time.29

We provide a foundation for further research on customer retention and learning in

platform markets. While we study policies specific to our context (higher quantities and

higher fixed prices), these policies suggest a general pattern. Consumers learn from negative

experiences. Consequently, the firm can reduce the number of negative experiences (higher

quantities) or make existing negative experiences less salient (higher fixed prices). Further,

more general research can build on our work and map features of existing markets into

these two categories.
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A. Seller’s Problem

In this Section we present a simplified model used to derive Observations 1 and 2 in Section

5. We denote the number of overbidders by ot and the number of non-overbidders by st.

We assume that non-overbidders buy at the fixed price whenever they do not buy in the

auction. To simplify, we assume that all bidders have the same latent bid β > p. We

assume overbidders never buy at the fixed price. While this may sound restrictive, the

seller will always supply each overbidder through the auction at a auction price weakly

higher than the fixed price. All bidders have unit demand.30

Definition 1. Seller’s Problem

A profit-maximizing firm solves the following problem:

max{qt}∞t=0

∑
t

δtπ(qt, ot, st),

where

π(qt, ot, st) =


β · qt + p · st if qt ≤ ot

p(ot + st) if ot < qt ≤ ot + st

0 if ot + st < qt

subject to:

ot+1 =


ot − (ϵ+ ι)qt if qt ≤ ot

ot if qt > ot

st+1 =


st + ιqt if qt ≤ ot

st if qt > ot

.

B. Proof of Observation 1

Proof. We guess two policy functions (always choose qt = ot+st) and always choose qt = st).

Since the union of these conditions covers the parameter space the desired result follows.

30Most of these assumptions are for illustrative purposes and are dropped in the empirical model in Section
6.1
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Because o0, s0 are both larger than one and ϵ, ι are both smaller than one we guarantee

that ot > 0 ∧ st > 0 ∀t.

In the remainder of this proof we drop the time index to simplify our notation.

We can simplify the strategy space because some actions are dominated and some are

outcome-equivalent. All actions with q > o+ s are dominated because profits are zero and

we can get positive profits with q = o+ s. Profits are constant over o < q ≤ o+ s. Thus we

can eliminate this interval from the action space if we include its upper boundary o+ s.

Having simplified the strategy space in this way we state the Bellman equation.

V (o, s) = maxq∈Q


q · β + sp+ δV (o− (ϵ+ ι) · q, s+ ι · q) if q ≤ o

(s+ o)p+ δV (o, s) if q = o+ s

,

where Q = [0, o] ∪ {o+ s}.

We guess and verify the policy q = o+ s. The result of this policy is is that the firm sells

o+ s unity each period at a price of p. This leads to the following value function

V (o, s) = Σ∞
k=0δ

k(ot + st)p =
(ot + st)p

1− δ
.

We derive conditions under which this value function solves the Bellman equation

(o+ s)p

1− δ
= maxq∈Q


q · β + sp+ δ (o+s−ϵq)p

1−δ if q ≤ o

(s+ o)p+ δ (o+s)p
1−δ if q = o+ s

,

where Q = [0, o] ∪ {o+ s}.

We need to check two cases, either the left arm (q ≤ o) of the right-hand side of the

Bellman equation rises or falls in q. It (weakly) rises if

β ≥ δ

1− δ
ϵp.
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In this case profits are either maximized at q = o+ s or at q = o. They are maximized

at q = o+ s and our guess is true if

o · β + sp+ δ
(s+ (1− ϵ)o)p

1− δ
≤ (o+ s)p+ δ

(s+ o)p

1− δ
(10)

↔ β − p

p
≤ δ

1− δ
ϵ. (11)

If

β

p
<

δ

1− δ
ϵ (12)

the left arm (q < o) of the right-hand side of the Bellman falls in q.

In this case profits are either maximized at q = 0 or at q = o+ s. They are maximized

at q = o+ s if

sp+ δ
(s+ o)p

1− δ
< (o+ s)p+ δ

(s+ o)p

1− δ

↔ 0 < op,

which is true. Since condition 11 is strictly stronger than 12, we can verify our guess of

no overbidding if condition 11 holds.

We guess that the seller wants all auctions to end in an overpay. Then the seller derives

a profit of p · s from the initial non-overbidders in perpetuity. They derive a profit of β per

overbidder in each period from a steadily declining stock of overbidders. This results in

ot(1 − ϵ − ι)kβ in each future period k. In each future period a fraction i of the current

overbidders is transformed into non-overbidders ot(1− ϵ− ι)p−1ιp. Consequently, in period

k there are Σk
p=1ot(1− ϵ− ι)p−1ιp that were generated through intensive margin learning.

The discounted sum of these period profits yields the value function under the conjecture

that the seller ends all auctions in an overpay
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V (o, s) = Σ∞
k=0δ

k(o(1− ϵ− ι)kβ + sp) + Σ∞
k=1δ

kΣk
p=1o(1− ϵ− ι)p−1ιp

= oβΣ∞
k=0δ

k(1− ϵ− ι)k + spΣ∞
k=0δ

k +
oιp

1− ϵ− ι
Σ∞
k=1δ

kΣk
p=0(1− ϵ− ι)p − 1

=
oβ

1− δ(1− ϵ− ι)
+

sp

1− δ
+

oιp

1− ϵ− ι
Σ∞
k=1δ

k

(
1− (1− ϵ− ι)k+1

ϵ+ ι
− 1

)
=

oβ

1− δ(1− ϵ− ι)
+

sp

1− δ

+
otιp

(1− ϵ− ι)(ϵ+ ι)
Σ∞
k=1δ

k(1− ϵ− ι)− (1− ϵ− ι)δk(1− ϵ− ι)k

=
oβ

1− δ(1− ϵ− ι)
+

sp

1− δ
+

otιp

ϵ+ ι
Σ∞
k=1δ

k − δk(1− ϵ− ι)k

=
oβ

1− δ(1− ϵ− ι)
+

spδ

1− δ
+

oιp

ϵ+ ι

[
δ

1− δ
− δ(1− ϵ− ι)

1− δ(1− ϵ− ι)

]
.

We look for conditions under which this conjecture for the value function solves the seller’s

Bellman equation (equation 10). If

β < δ(ϵ+ ι)

(
β

1− δ(1− ϵ− ι)
+

ιp

ϵ+ ι

[
δ

1− δ
− δ(1− ϵ− ι)

1− δ(1− ϵ− ι)

])
− δp

1− δ
(13)

there is no overpaying because the left arm of profits fall in q. Then we have to compare

q = 0 with q = o+ s. Since the latter leads to higher period profits and both lead to the

same future profits the firm prefers q = o+ s, which refutes our conjecture.

If condition 13 does not hold the left-arm of the values function rises in q and the seller

ends every auction in overpaying if he prefers that to q = o. This is the case if
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β − p ≥ δ(ϵ+ ι)

(
β(1− δ(1− ϵ− ι))−1

+ ιp(ϵ+ ι)−1

[
δ

1− δ
− δ(1− ϵ− ι)

1− δ(1− ϵ− ι)

] )
− ιδp(1− δ)−1

↔

β − p ≥ δ (ι+ ϵ)β (1− δ (1− ϵ− ι))−1 + ιp
δ2

1− δ
− ιp

δ

1− δ

− ιp
δ2 (1− ϵ− ι)

1− δ (1− ϵ− ι)

↔

β − p ≥ δ (ι+ ϵ)β (1− δ (1− ϵ− ι))−1 + ιp
δ2 − δ

1− δ
− ιp

δ2 (1− ϵ− ι)

1− δ (1− ϵ− ι)

↔

β − p ≥ δ (ι+ ϵ)β (1− δ (1− ϵ− ι))−1 + ιp
δ2 − δ

(1− δ) ( 1− δ (1− ϵ− ι))
,

where the last step follows if since1
d > 1− ϵ− ι, which is always true since ϵ, ι and d are

all between zero and one. Having simplified the condition so far we can collect terms and

solve for a condition on ϵ

(1− δ (1− ϵ− ι)) (β − p) ≥ δ (ι+ ϵ)β + ιp
δ2 − δ

1− δ

↔ (1− d)β − 1− 2δ + δ2 + δe− δ2ϵ

1− d
p ≥ 0

↔ (1− δ)β − (1− δ) p− δϵp ≥ 0

↔ β − p

p

1− δ

δ
≥ ϵ.

This condition covers all cases in which the other strategy is not optimal. Consequently,

the seller either sets q = o or o < q ≤ o+ s.
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C. Proof of Proposition 2

Proof. The potential outcome for the the untreated (people that did not overpay) is the

probability that an overbidder submits a strict non-overbid,

E[non-overbidt+1
t (0)|ui] = P(pt+1 > βi,t+h > b(qt+h)|ui).

If we exogenously assign a bidder to the treated status they either stay an overbidder,

become a non-overbidder or leave. In the cases in which they become a non-overbidder they

also change their latent bid distribution. This leads to a change in probabilities which we

denote by switching from P to P ′. We calculate the potential outcome of a bidder treated

in t and observed in t+ 1 as

E[non-overbidt+1
t (1)|ui] =E[(1− ϵi − ιi)|ui]P(βi,t+1 < pt+1 ∧ βi,t+1 > b(qt+1)|ui)

+E[ιi|ui]P ′(βi,t+1 < pt+1 ∧ βi,t+1 > b(qt+1)|ui).

Adding an intelligent zero and taking the difference of potential outcomes yields the

following expression for the treatment effects

E[TEt+1
non-overbid] = E[−ϵi|ui]P(pt+1 > βi,t+1 > b(qt+1)|ui)

+ιi(P
′(pt+1 > βi,t+h > b(qt+1)|ui)− P(pt+1 > βi,t+1 > b(qt+1)|ui))
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D. Proof of Proposition 3

Proof. We are interested in the treatment effect of overpaying in period t, but we can only

estimate it from pooling observations over a time period. Previously, we have written down

the treatment effect from overpaying in t on the next auction, i.e. in auction t+1. If we add

up these treatment effects, we do not account for the possibility that there could be double

treatments. To rule out that effects come from double treatments we first write down the

probability of a type change from treatments in periods t + 1 to t + k − 1. Using this

probability we can calculate the effect from treatment in t excluding subsequent treatments.

In Proposition 4 we sum over these treatment effects to get an expression for the treatment

effect from pooled observations, that we can then use to recover learning rates.

Let pl,k denote the probability that an overbidder changes his type to dropout because

of a treatment in periods t+ 1 to t+ k − 1. Notice that a change in type is irreversible

in our model, so we simply need to sum over the probability to change type at a specific

point in time, but not before that point in time. The probability of a type change in period

t+m is the probability of treatment, overpaidi,t+m times the probability of changing type

due to treatment, ϵi. The converse probability is the probability of neither changing to

dropout nor to non-overbidder before t+m. Thus, we get the following expression for pl,k

(the argument for ps,k is analogous).

E[pl,k|ϵi, ιi, ui] = E
[
Σk−1
m=1overpaidi,t+mϵi(1− (ϵi + ιi)overpaidi,t+m−1)

m|ϵi, ιi, ui
]

E[ps,k|ϵi, ιi, ui] = E
[
Σk−1
m=1overpaidi,t+mιi(1− (ϵi + ιi)overpaidi,t+m−1)

m|ϵi, ιi, ui
]
.

Next we use these probabilities to characterize the potential outcomes in period t+ k

for a bidder who we assign exogenously to be either untreated (E[non-overbidt+k
t (0)|ui])

or treated (E[non-overbidt+k
t (1)|ui]) in period t. Note that the term (1− E[pl,k|ϵi, ιi, ui])

captures that the type change did not occur in periods t+ 1 to t+ k − 1.
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E[non-overbidt+k
t (0)|ui] = E[(E[pl,k|ϵi, ιi, ui])1(βi,t+k < pt+k ∧ βi,t+k > b(qt+k)|ui)]

= E[E[pl,k|ϵi, ιi, ui]|ui] · P(βi,t+k < pt+k ∧ βi,t+k > b(qt+k)|ui)

E[non-overbidt+k
t (1)|ui] = E[(1− ϵi)(E[pl,k|ϵi, ιi, ui])1(βi,t+k < pt+k ∧ βi,t+k > b(qt+k)|ui)]

= E[(1− ϵi)(E[pl,k|ϵi, ιi, ui])|ui] · P(βi,t+k < pt+k ∧ βi,t+k > b(qt+k)|ui).

The last step in each follows because conditional on ui, ϵi and βi,t+k are independent. If

we take the difference of potential outcomes we get the treatment effect.

E[TE-overbidt+k
t |ui] = E[−ϵi · E[pl,k|ϵi, ιi, ui]|ui]P(βi,t+k < pt+k ∧ βi,t+k > b(qt+k)|ui).

The calculation for the treatment effect on observed overbids is analogous.

E. Proof of Proposition 4

Proof. We take the expression for the potential outcome of the untreated and the treatment

effect from the proof of 3 and divide one by the other.

−Σk
m=0E[TEt+m

non-overbid]

Σk
m=0E[non-overbidt+m

t (0)|ui]

=
Σk
m=0E[ϵi(1− E[pl,m|ϵi, ιi, ui])|ui]P(pt+m > βi,t+m > b(qt+m)|ui)
Σk
m=0E[(1− E[pl,m|ϵi, ιi, ui])|ui]P(pt+m > βi,t+m > b(qt+m)|ui)

=
Σk
m=0E[ϵi(1− E[pl,m|ϵi, ιi, ui])|ui]
Σk
m=0E[(1− E[pl,m|ϵi, ιi, ui])|ui]

.

The proof for the treatment effect on strict overbids is analogous.

F. Control Variables

We calculate two sets of bidder history variables. First, we calculate histories for the bidders

in our control and treatment group. Given that we restrict attention to the first overbid
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of each bidder our bidder history variables only capture behavior and experience in the

auctions of this seller before that first overbid. Hence our variables do not control for a

previous overbid as there was none by construction. When a bidder overbids on the first bid

we do not observe a history before that, because there was none. In this case we substitute

the average from treatment and control bidders in the same auction. This substitute may

not be available if all control and treatment bidders were new bidders. In this case we keep

the NA and exclude these observations in regression that include bidders histories.

The bidder history variables roughly fall into two categories. First, there are variables

that measure the average previous behavior. For example, the average difference to the

high bid measures whether a bidder usually bids early in the auction and the share of

bids by phone measures whether a bidder usually bids by telephone or online. Second,

some variables refer more to the experience that the bidder had in the previous auctions.

For example, the time in the market measures how many hours have past since the first

observed bid for that bidder in our sample and total savings measures how much money

the bidder has saved compared to the fixed price.

We calculate the same set of bidder history variables also for the other bidders in the

auction, even if they are not in the treatment or control group. Referring back to Section

6.3, this controls for the other bidders individual characteristics u−i, that were left out of

the DAG for simplicity.

Table 6 gives summary statistics for all history variables that we calculate. It is evident

that there are differences between the treatment and control groups, which reassures us

that it is helpful to control for this set of proxy variables.
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Table 6: Average value of bidder history variables, and fixed price (pt) and number of
products (qt) at the first overbid, split by overpaid.

0 1

Mean Std. Dev. Mean Std. Dev.

fixed price 29.63 67.20 30.78 85.86
quantity 282.88 275.17 272.61 257.81
new bidder 0.39 0.49 0.35 0.48
own number of bids 6.74 6.95 7.25 7.63
own average savings, logged 3.50 1.07 3.63 1.09
own average bid, logged 3.56 0.62 3.60 0.66
own time in market (hours) 1479.14 2491.12 1756.69 2690.80
own share of bids by phone 0.82 0.32 0.79 0.34
own average difference to the high bid 11.44 18.44 12.19 24.16
others average number of bids 44.56 39.27 47.42 39.18
others logged total savings 4.99 1.33 5.13 1.30
others logged average bid 3.35 0.47 3.43 0.49
others time in market (hours) 2502.92 2471.15 2701.00 2404.57
others fraction of new bidders 0.13 0.14 0.10 0.11
others share of bids by phone 0.58 0.15 0.60 0.15
others average difference to the high bid 7.73 3.75 8.21 4.63

Category Share Overpaid n

Heimwerken & Garten 0.32 6246
Mode & Accessoires 0.28 13269
Beauty & Wellness 0.26 15257
Uhren 0.25 8059
Schmuck 0.22 7950

Haushalt 0.20 16786
Möbel & Heimtextilien 0.16 6981
Freizeit & Sammeln 0.08 157

Table 7: Average probability of a bidder to be treated (overpay) at their first overbid by
show category.

Weekday Share Overpaid n

Sunday 0.21 13909
Monday 0.17 9706
Tuesday 0.27 10209
Wednesday 0.28 9329
Thursday 0.24 9856

Friday 0.25 9581
Saturday 0.26 12115

Table 8: Average probability of a bidder to be treated (overpay) at their first overbid by
day of the week.
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Figure 6: Average probability of a bidder to be treated (overpay) at their first overbid by
time of day. Averages are by hour. The time between 18:00 and 19:00 is missing
from hour data because of a coding error.

G. Structural Break

52



Time

F
 s

ta
tis

tic
s

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
20

40
60

80

Figure 7: Time series of F statistics for a single shift hypothesis, fitted at every day in our
sample. The red line gives the critical value at the 1 percent significance level.
We accept the most probable break-point at the dashed line, 16th of May 2018.
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Figure 8: Changes in number of auctions and number of products per auction to both sides
of the structural break. We use weekly averages and fit a linear trend at both
sides of the structural break.
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Figure 9: Changes in the fixed price of the auctioned products. We use weekly averages
and fit a linear trend at both sides of the structural break.

H. Regression Using Period 90-180 Days After Treatment

Table 9: Overpaying Reduces Future
Revenue (90-180)

Revenue Revenue

Overpaid −0.598 −7.314
(4.865) (6.005)

Num.Obs. 124 136 77 029
R2 0.051 0.126
Cf. Mean 193.165 224.008
Bidder History No Yes
Window 90-180 90-180

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 10: Overpaying Reduces #Overbids and #Non-Overbids (90-180)

# Overbids # Overbids # Non-Overbids # Non-Overbids

Overpaid −0.173*** −0.204*** −0.213 −0.422**
(0.035) (0.041) (0.150) (0.171)

Num.Obs. 124 136 77 029 124 136 77 029
R2 0.060 0.121 0.095 0.204
Cf. Mean 1.755 1.995 8.886 10.405
Bidder History No Yes No Yes
Window 90-180 90-180 90-180 90-180

* p < 0.1, ** p < 0.05, *** p < 0.01

I. Poisson Regression

Table 11: Overpaying Reduces #Overbids and #Non-Overbids (Poisson)

# Overbids # Overbids # Non-Overbids # Non-Overbids

Overpaid −0.133*** −0.121*** −0.034* −0.040**
(0.024) (0.022) (0.020) (0.019)

Num.Obs. 115 295 71 261 115 295 71 261
R2
R2 Pseudo 0.132 0.206 0.127 0.257
Cf. Mean 1.431 1.616 5.795 6.846
Bidder History No Yes No Yes
Window 0-90 0-90 0-90 0-90

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 12: Overpaying Reduces #Overbids and #Non-Overbids (90-180, Poisson)

# Overbids # Overbids # Non-Overbids # Non-Overbids

Overpaid −0.103*** −0.105*** −0.022 −0.034**
(0.021) (0.022) (0.018) (0.016)

Num.Obs. 124 136 77 029 124 136 77 029
R2
R2 Pseudo 0.101 0.205 0.162 0.345
Cf. Mean 1.752 1.991 8.878 10.383
Bidder History No Yes No Yes
Window 90-180 90-180 90-180 90-180

* p < 0.1, ** p < 0.05, *** p < 0.01

J. First Five Overbids

We redo the empirical exercise separately using the first five overbids of each bidder.

Learning may turn an initial overbidder into a non-overbidder or dropout already after

the first overbid if it was overpaid. Accordingly, we observe fewer second overbids than

first overbids as is depicted in Figure 10. Learning after the first overbid is likely to be

skewed to well-learning overbidders and, hence, we expect to back-out smaller learning rates

using the second overbid for each bidder compared to the first overbid. Figure 11 reports

the backed-out extensive margin learning rates for the first five overbids. The pattern is

the same across methods (ols and poisson regression) and time periods of aggregation (90

days after overbid and 90-180 days after overbid). Subsequent overbids are associated with

smaller epsilon values, bar some outliers.
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Figure 10: Number of Observations First Five Overbids
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Figure 11: Epsilon First Five Overbids

58


	Introduction
	The Multi-Unit Auctions
	Data
	Break in Overbidding and Overpaying 
	Back-of-the-Envelope Calculation

	Firm Incentives
	Empirical Strategy
	Empirical Model 
	Interpretation of Treatment Effects 
	Shift in Latent Bid Distribution
	Pooling of Observations Over a Period of Time

	Identification of Treatment Effects 

	Regression Results
	Conclusion
	Seller's Problem
	Proof of Observation 1
	Proof of Proposition  2
	Proof of Proposition 3 
	Proof of Proposition 4 
	Control Variables
	Structural Break 
	Regression Using Period 90-180 Days After Treatment
	Poisson Regression
	First Five Overbids

